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1 Science Summary

The initial version of this project described in the awarded proposal aimed at largely focusing on
the evaluation of Intel KNL hardware and the development of new scientific use cases such as the
neurorobotics and whole brain modeling. However, during the course of the project EPFL has been
awarded a high impact INCITE project focused on the development of models to support brain
plasticity which is considered as the key toward understanding memory. Considering this very
prestigious opportunity a large part of our developments has been refocused on the development of
methods to support the plasticity use case which is described in Annex 1 along with the awarded
INCITE proposal. [Proposal not included here. -Ed.]

2 Codes, Methods and Algorithms

NEURON software has been developed over the last 30 years by Michael Hines from Yale Uni-
versity to support the electrical simulation of large scale neural networks where neurons can be
modeled as point neurons or morphologically detailed neurons. The software is implemented in C
and C+-+, Python and HOC interpreted languages. To maximize users productivity, NEURON
also includes support for the NMODL language which implements a DSL specific to neuroscience.
At compilation time, NMODL files are translated into C code which is then compiled to build the
NEURON executable. NEURON software distributed implementation is using MPI and more re-
cently OpenMP and proved to scale up to 32k processors of IBM Blue Gene/L. The code is mostly
memory capacity bound and memory bandwidth bound. It requires the resolution of a very large
number of small kernels representing synapses (memory bandwidth bound) and ion channels (either
compute or memory bandwidth bound). However, and due to the need for NEURON to support
a large set of use cases, NEURON implementation lacked a number of optimizations such as its
memory usage leading to very large memory footprint requirements. coreNeurons effort started
to resolve this issue and allow for explorations of new solutions. NEURON and coreNeuron now
work together as described in Figure [I NEURON and its high level proprietary layer Neurodamus
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(implemented in HOC language) are used to setup the model which is built in memory by part with
a footprint of about 18MB per neuron. The model is then dumped by chunks into files. coreNeuron
memory footprint optimized implementation (About 3MB per neuron) loads the model specification
of NEURON, assembles it in memory and starts the execution of the simulation.
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Figure 1: NEURON to coreNEURON workflow

3 Code Development & Refactoring

Due to the support of a large set of scientific projects, including an INCITE project, coreNeuron
has gone through a large set of code developments as follows: At the beginning of the project,
the workflow described in Figure 1 was relying on the manual execution of both NEURON and
coreNEURON in sequence. To considerably improve the efficiency of the workflow and its scientific
usability, a large amount of efforts has therefore been put on performing a large refactoring of
coreNEURON to support the possibility to get it compiled as a library and be directly linked to
NEURON so that NEURON high level layer Neurodamus could be used to drive the execution
from the user point of view. This refactoring is now achieved and in use by our scientists. In
addition, and in order to run a simulation using coreNEURON, the model must still be built using
original Neurodamus and NEURON workflow. Since these consume substantially more memory, it
is necessary to partition the circuit into smaller pieces and perform the model building one by one.
This was originally done by manually creating subsets appropriately sized for the target compute
partition and then selecting these subsets one at a time via an external bash script. This was a
time- consuming task for users and prone to errors which could require regenerating all subsets.
The latest version of Neurodamus now automatically partitions the circuit according to the available
resources and in a single execution is able to build a subset, generate the model files, clear memory,
and continue to the next piece. In the event that model building is interrupted before all subsets
are completed, Neurodamus can resume after the last successfully generated subset.



Both of those developments brought considerable value to our users and contributed to make
coreNeuron eventually usable and used by our community as opposed to being considered as an
optimized version of NEURON only HPC experts could use at large scale.

3.1 Configurations and Optimization for Theta

Thanks to prior work done in the European Project Dynamic Exascale Entry Platform (DEEP),
NEURON/coreNeuron software was already made ready for Intel KNC architecture and kernels
optimized for this type of architecture [6]. Therefore, a large part of the time has first been
dedicated to studying Intel KNL architecture and Theta configuration to understand how to tune
the setup of the software to eventually best leverage Thetas performance.
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Figure 2: Single node performance of coreNeuron for various configurations of Intel KNL

We first used JLSE testbed system to test all available KNL configurations. Although most of avail-
able configurations have been tested, Figure [2| only shows the most two interesting one, that is when
the KNL was booted in MCDRAM FLAT and Cache modes. From this Figure, we concluded that
using KNL cache mode was bringing significantly good performance while considerably simplifying
the implementation of the code. For the sake of completeness, we have also done a preliminarily
implementation of some of the kernels using MCDRAM flat mode and identified using different
tools a number of heavily used data structures to be first placed in the MCDRAM cache. How-
ever, we observed that such code division would require significant refactoring of the software while
bringing a limited boost of performance. We therefore decided to focus more on the advancement
of software to enhance community support in addition to working on preparing the next version of
coreNEURON to target very large-scale simulation.

coreNEURON distributed version relies on a mix of MPI and OpenMP where a number of neurons
are assigned to each thread along with a work stealing algorithm. In Figure we have tested
different OMP scheduling policies and concluded that the guided policy was the optimal to use (6%
faster than the static one for a simulation of 100ms).

Figure [ shows an analysis of the simulation time of coreNEURON for various combinations of
OMP threads per MPI task up to a total of 2048 cores. From this study we can see that the best
result is obtained when using 4 OMP threads and 32 MPI ranks per node.



OMP scheduling strategies

1400
1206.08

1200 1139.17 1132.7

1000
z
é 800 W static
- W dynamic
o
g 60 guided
g
B 400

248.555 242.252 241.942

- -
0

10 100

biological time simulated (ms)

Figure 3: Analysis of the various OMP policy strategies.
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Figure 4: Comparison of various combinations of MPI and OMP setup.

Figure [la shows the resolution workflow of coreNEURON. All computation is independent of the
other processes until it reaches the “spike_exchange” component which is responsible for supporting
the exchange of spikes between the neurons. The frequency of exchange depends on what the
biologist refers as the minimum spike delay which consists of the minimum amount of time at which
neurons must be synchronized to avoid introducing too high of an error. In practice, the frequency
of such an exchange corresponds to 4 or 5 time step resolutions. Figure [B}b shows a histogram
of the execution time needed for the Spike Exchange routine (implemented using MPI_Allgather)
responsible for communicating spikes between neurons. A well- balanced problem should exhibit
very small variability between the different threads and make the Spike Exchange component only
use about 2-6% of the total wall time (instead of taking more than 30% of the wall time when
the problem is highly imbalanced). Even though it was not critical at this point, to further speed
up this part of the code, it is worthwhile to point out that an alternative implementation referred
as multisend (sending spike trains during multiple rounds through a minimum time delay [3]) has
been migrated from NEURON to coreNEURON. In addition, several implementations of the queuing
algorithm which is part of the Spike Exchange functionality have been investigated and summarized
in [5] as part of the NeuroMapp library development.
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Figure 5: (a) coreNEURON resolution workflow and (b) Histogram of execution time of the Spike
Exchange function for an execution with 65k processes. Well-balanced workload should show limited
variations.
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Figure 6: Strong scaling of coreNEURON up to 2k processors.

Using these optimal setups (KNL in cache mode, 32 MPI processes and 4 OMP threads per node,
auto-vectorized and the used of SOA layout, OMP guided policy), we have performed a strong
scaling study of coreNEURON on up to 2048 nodes of Theta (Figure 6). As BBP does not yet have
a scientific use case which includes a large number of neurons to be included in the circuit, we had
to artificially increase the size of the neural circuit to fit on 131k cores of Theta (2048 nodes). From
this Figure, we can observe that even that coreNEURON loses scaling at high core counts although
it proved to scale at more than 80% when there was enough load per processor. This result is due
to the fact that the load per processor was still not high enough to get good results, demonstrating
the need for a strategy that efficiently supports the subdivision of neurons into smaller parts.



3.2 New Methods/Algorithms

Load-balancing: coreNEURON strong scaling is currently limited by load-balancing: The simulation
is synchronous, with a static work-load scheduling policy, pre- computed at the circuit creation in
our previous simulation pipeline stage. The minimum partition size is equal to a whole neuron. Each
neuron is different with different compute intensity and memory footprint due to cell morphology,
electrical behavior, synapses and level of detail chosen for this simulation. Based on dry-runs time
estimation performed with NEURON prior to the actual execution of the simulation, the static
scheduler distributes using round robin sets of neurons to MPI ranks until an average set complexity
is reached per MPI rank. As the response of the neurons is not localized to specific geographic
locations of the neural network during the course of a simulation, such a workflow allows NEURON
to achieve close to optimal balancing of the load across all MPI ranks. However, using the workflow
described in Figure 1, coreNEURON used the results of the NEURON dry-run analysis to perform
its own load balancing. As the two implementations come with different computing complexities,
such a solution proved to be suboptimal. Thanks to the developments of coreNEURON as library
we could fix this issue and have coreNEURON generating its own estimate and thus considerably
fix its load balancing, reaching again the results obtained with NEURON.

The scheduling policy remains a limiting factor at very large scale as shown from ESP experiment:
we are reducing the average number of cells per MPI rank, increasing load-imbalance. This limiting
factor can be solved by considering other numerical methods that eventually permit to split a
neuron into smaller computation tasks, leading to better scheduling opportunities such as the one
below.

Supporting very strong scaling: To support the very strong scaling use case, NEURON soft-
ware implements the multisplit algorithm [2] which supports neuron subdivision up to about 4-8
subdivision per neuron without loss of scaling. Beyond this threshold, the resolution of the very
small linear tridiagonal algebraic system (of order equal to the number of neuron compartment
which is about 300-400 per neurons) becomes the bottleneck for the scalability if one targets to
subdivide neurons by a very large factor. As part of this project we have been looking at methods
that could support subdividing neurons to the level of a single compartment to massively increase
the level of parallelism of the simulation (targeting 100x order of magnitude more parallelism). We
present here only preliminarily results of our implementation.

The stability of the explicit solver must respect the following condition

A 2
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Where ¢; and r; correspond to the conductance and radius of the neuron j.

As introducing a new solver in coreNEURON or NEURON requires a lot of code refactoring, we
decided to first use the NeuroMapp library [5], a miniapp library to evaluate the implementation of
several solvers. As such, both implicit and explicit methods were introduced into NeuroMapp and
comparison were made between the various solvers at the level of a single compartment. In Figure
we first validated the implementation of the explicit solver by verifying the onset of numerical
instabilities when not respecting the conditions described by the stability equation.



In Figure [8, we have compared the results obtained by the implicit and explicit solvers and observed
that both solvers were not exactly matching in terms of frequency but also in amplitude, leaving
room for further numerical analysis. Further developments are currently carried out with the goal
to further exploit the explicit solver and its degree of parallelism in order to possibly distribute the
data only into L2 or L1 cache of the KNL.
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Figure 7: Validating the implementation of the explicit solver by verifying the onset of instabilities
for the HH channel when using a Forward Euler solver. The evolution of the membrane potentials
is provided for dt=0.05ms and dt=0.06ms (First and third rows) while the evolution of the channel
gates is provided in both the second (dt=0.05ms) and fourth rows (dt=0.06ms).

Reducing memory footprint through in-memory compression: As one of the main chal-
lenges of the NEURON /coreNEURON application lies in its the large memory footprint we have
investigated the possibility to support the compression of data in memory. Extensive details of the
study are provided in [I] which is attached to this document in Annex 2 [Not included here; see
https://github.com/DevinBayly/gsoc_report/blob/master/report.pdf -Fd.]. The conclusion
of this preliminary study is that coreNEURON offers opportunities to compress the required data.
However, it remains to be seen whether data compression will not eventually degrade the perfor-
mance of the overall application. Further investigations must be conducted in the future.

4 Portability

Through its source to source compiler and the support of the NMODL, coreNEURON has been
made portable across a number of architectures including x86, Intel KNL, NVIDIA GPU and IBM
POWER systems. The NMODL DSL automatically includes a number of generic pragmas which
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Figure 8: Comparison of the voltage evolution of a single compartment with respect to time when
using implicit (orange) and explicit (blue) solvers: The response of the explicit solver is not yet
matching the one of the implicit solver.

are replaced by platform specific pragmas at compile time based on the targeted architecture. An
example of the results obtained on NVIDIA GPUs were presented at an NVIDIA GTC Confer-
ence [4].

Further developments are currently being investigated to further improve the existing source to
source compiler. It includes refactoring of the software itself to perform optimizations before the
code is actually presented to the backend compiler. No results are however yet ready to be presented
as part of this report.

5 Conclusions

After the careful evaluation of Intel KNL hardware and the performance of coreNEURON software
when the system was booted in either cache or flat mode, we have concluded that the benefits of
the heavy code refactoring required by the flat mode were not substantial enough. We therefore
focused on making the best use of the cache mode of the Intel KNL through the careful analysis
and tuning of the software setup while spending more time on developments and enhancements of
new functionalities needed by the scientific community. In addition to the developments and setup
optimization on KNL-based system and the kernel optimizations previously performed on Intel
KNC system, a number of proof of concepts such as in-memory compression, the implementation
of an explicit solver as well as the study of the impact of the Spike Exchange on application scaling
have been investigated to anticipate future issues of the software towards Exascale computing.
Those developments and know how have greatly contributed to support the work performed as part
of the on-going INCITE grant which aims at studying brain plasticity. It will allow BBP to be
fully equipped to move its INCITE workload from Blue Gene/Q to KNL Theta over the years to
come.
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Annex 1 - Plasticity use case

Use Case Description

The term “synaptic plasticity” refers to the capability of neurons to create, adapt or
eliminate synaptic connections with other neurons. Synaptic plasticity is a ubiquitous
phenomenon in the mammalian brain and it is considered to be the biological substrate of
learning and memory. However, the exact mechanisms behind synaptic plasticity are still
largely unknown, mainly due to the current limitations of experimental procedures.

Many theoretical models have been proposed to describe bits of the accumulating
experimental evidence. However, those models often target only a specific phenomenology
(i.e. spike-timing dependent plasticity, homeostatic synaptic scaling or structural plasticity)
and so fail to explain how the underlying plastic mechanisms work and how the different
mechanisms are orchestrated together in the brain. A unifying model of the mechanisms
driving synaptic plasticity is clearly lacking and it is very unlikely that simply combining
several phenomenological models is going to tell us anything about the connection between
synaptic plasticity and learning or memory.

For obvious reasons, synaptic plasticity models need to be combined with neuron and
connectivity models in order to study network effects. The most widely adopted approach
is to rely on point-neuron models, connected in sparse random networks, neglecting
important aspects of neuronal biophysics for simplicity and tractability. Although these
simplifications are usually tolerable and even beneficial when modeling synaptic plasticity
as in simple in vitro experiments, they pose a serious threat to the validity of the conclusions
when the results are generalized as brain principles. It is indeed well known that the spatial
extent of neurons and their connectivity have several important effects on synaptic
plasticity, both directly and indirectly through network dynamics:

* The location of synapses on neuronal morphologies determines the outcome of
typical LTP/LTD inducing protocols, see (Froemke, Poo, & Dan, 2005)

» Concurrent activation of strategically positioned synapses can regulate the plastic
changes at other dendritic locations, i.e. apical trunk and tuft dendrites in layer 5
pyramidal cells, see (Sjostrom & Héusser, 2006)

» Synchronous activation of neighbor synapses reduce the risk of synapse pruning in
vivo (ref missing)

For these reasons, biologically detailed simulations of neural circuits are the only viable
alternative nowadays to study how a local phenomenon such as synaptic plasticity could
give rise to global learning rules and support information storage in the brain.

A model of the whole rat somatosensory cortex is an excellent system to study synaptic
plasticity at network level. From a technical point of view, the main challenge of such a
project is not simulating many neurons, but rather many synapses for a very long time.
Furthermore, the synaptic model needs to be enriched to support long-term dynamics, such
as calcium-based potentiation and depression, and so it is computationally more expensive
than the current one.
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Requirements
Circuit Size: Somatosensory cortex SI, one hemisphere only (roughly 5 million neurons,
8 billion functional synapses, 80 billion potential synapses'), see Figure 1.
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Figure 1: 3d reconstruction of somatosensory cortex SI. From (Hjornevik, et al., 2007).

Synapse Models: Two state process. Bidirectional transitions from potential synapse
(simple linear system) to fully functional synapse (complex nonlinear system), see
Mathematical Appendix. The model might change later. In particular, we never tested the
rewiring dynamics and the proposed models are mostly placeholders. The most
substantial change might be the need of better characterizing bouton creation and
elimination to preserve our connectivity constraints. This would require the introduction
of the axon in the simulation or a similar mean to explicitly describe the axonal
dynamics. Despite this major change, we expect only modest differences in the model
equations. Furthermore, the general idea of the synapse as a multi-state process with
simple/complex states should hold.

Biological Time: minimum 1 day, maximum 30 days.

* [ to 5 days — The time frame should be long enough to experiment with basic
learning tasks. We might expect a small fraction of potential synapses
transitioning into functional and vice versa, while preserving the overall ratio
between the two populations. Depending on the experiment, the turnover of
functional synapses should vary between 10 % and 20 %. Given the time scale of
the components of the functional synaptic model, we should be able to observe
how neural activity and plasticity mechanisms shaped the actual values of all the
synaptic variables. Again, any change should eventually be compensated by
another one to preserve circuit stability.

* 5 to 30 days — In such a long time frame we might expect major restructuring of
the circuit. A substantial fraction of potential synapses will become functional and
vice versa, while preserving the overall ratio between the two populations.
Depending on the experiment, the turnover of functional synapses should vary
between 20 % and 60%. In this setup we will probably study only the stability of
microcircuit rewiring.

1A potential synapse is an apposition between two neurons that could host a synapse, although is

not. Those appositions can be dynamically converted into functional synapses by plastic mechanisms.
11
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